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A class of problems from statistical physics is discussed that is shown to be identical to a class of prob-
lems in population genetics. The mathematical treatment of these problems has arisen independently in
the two subjects. The important results of both literatures are presented here, together with cross refer-
ences. In each case there is a stochastic process generating a set of variables x; that satisfy ¥ ,x;=1.

For example, the x; may represent the weights of valleys in a spin glass, the sizes of attractors in dynami-
cal systems, the frequency of different alleles in a population, or the sizes of different families in a genea-
logical tree. The frequency distributions f(x) of the valleys or alleles are calculated, together with the
distribution II(Y) of the quantity Y =3,x?. The distribution II(Y) can be written as a sum of universal
functions I, (Y) that are independent of the parameters of the problem. It is shown that the rather
abstract concepts in the physical models are directly related to observables that are experimentally mea-

sureable in biology.

PACS number(s): 02.50.—r, 87.10.+¢, 75.10.—b

I. INTRODUCTION

Much progress has been made recently in applying
ideas taken from statistical physics to problems of evolu-
tion and mathematical biology. For example, the rugged
fitness landscapes arising in evolutionary biology are
sometimes modeled using rugged energy landscapes taken
from spin-glass theory [1,2]; rugged energy landscapes
are also relevant to the folding of biological macro-
molecules such as RNA [3,4]; branching tree structures
and ultrametricity arise both in evolutionary biology and
in spin-glass theory [5-8]; and the dynamics of coevolu-
tion in multispecies systems has recently been likened to
the self-organized critical dynamics observed in some
models of statistical physics [9,10]. In this article we will
consider a class of problems where the parallel between
physics and biology is extremely close. In fact, we will
give two examples where the identical problem has arisen
independently in the two fields. We will summarize the
important results of the two literatures, so as to em-
phasize the similarities.

There are many problems in which one has a set of
variables x; that are determined by some stochastic pro-
cess, such that 3,x;=1. One is interested in the proba-
bility distribution of these variables over many realiza-
tions of the process. For example, in disordered thermo-
dynamic systems such as spin glasses [11-13],
configuration space is divided into many low energy val-
leys separated by high energy barrier regions. In this
case x; represents the equilibrium probability of finding
the system in the ith valley. Disordered systems contain
quenched variables (the couplings J;; in spin-glass mod-
els), which are usually determined from a random distri-
bution. A different set of x; arises from each random
choice of the quenched variables. (Note that in most
cases the symbol w; is used for the weights of the valleys.
We use x; here since x is usually used for gene frequen-
cies and w usually has a different meaning of fitness in the
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biological literature.)

A situation similar to the spin glass arises in dynamical
systems such as neural networks and cellular automata
[1,14,15]. Here phase space may have many attractors
and x; is the probability that the system falls into attrac-
tor i. Derrida and Flyvbjerg have studied two simpler
problems of this type in which a great deal can be said
analytically about the x; distribution. One of these is the
quenched random map [16], in which each configuration
of the system has a randomly chosen successor
configuration, resulting in a set of point attractors and
limit cycles. The other example is the randomly broken
object [17], in which an object to initial size 1 is broken
by a random procedure into many pieces and x; is the
size of the ith piece.

Similar problems also arise in population genetics.
Suppose that several different alleles for a given gene exist
and x; represents the frequency of the ith allele. These
frequencies change in time due to random sampling, mu-
tations, and selection. One may study the time averaged
probability that the allele has frequency x; [18-21]. The
genealogical structure of the population is also of interest
[22-25,6]. The population may be divided into families
of closely related individuals and x; then represents the
fraction of the population in the ith family. The distribu-
tion of family sizes averaged over all realizations of the
genealogical branching process may then be studied.

An interesting quantity in all these models is ¥ =3, x2.
In genetics, Y is called the homozygosity [21,26,27]. It is
the probability that two randomly sampled genes at a
given locus are identical or that the two copies of a par-
ticular gene in a diploid individual are identical. In ecol-
ogy, one may be interested in the relative abundances of
different species within a community [28-30]. In this
case Y is the probability that two randomly selected indi-
viduals are of the same species (this is sometimes called
Simpson’s index). In physics, Y arises in the replica
theory of mean field spin glasses [11-13,15]. It is the
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probability that two randomly chosen configurations fall
in the same valley. If there are K valleys and all valleys
have roughly equal occupation probabilities, then
x;~1/K and Y~1/K. Thus in the thermodynamic lim-
it, K— o0 and Y =0 trivially. For spin glasses this hap-
pens at high temperature. The interesting thing about
spin glasses is that there is a temperature T, below which
Y is nonzero in the thermodynamic limit. This is because
there are a few valleys with weights x; of order 1 and
very many small valleys that do not contribute much to
Y. Below T,, Y is a random variable in the range 0-1
with a broad probability distribution II(Y). The same
thing happens in population genetics: when there are
many alleles present, a few of these have large frequen-
cies, while most have very small frequencies. Thus the
homozygosity Y has a broad and complex distribution.

II. ALLELE FREQUENCY DISTRIBUTIONS
AND THE RANDOMLY BROKEN OBJECT

Let us begin with the K-allele model in population
genetics (see Crow and Kimura [20], Chaps. 8 and 9, or
Ewens [21], Chap. 3). Here one considers a gene that
may exist in any one of K different forms (alleles). The
population size is N and n; is the number of copies of the
ith allele in the population, so that the frequency of the
ith allele is x; =n; /N. (We have assumed a haploid popu-
lation for simplicity: for a diploid population it is neces-
sary to replace N by 2N in all the following formulas.) In
this model the alleles are neutral (i.e., they all have the
same fitness), so that the gene frequencies at the next gen-
eration are determined by random sampling from the
present generation. In addition, there is a mutation prob-
ability u per allele, and it is assumed that mutation
occurs to one of the other K —1 alleles at random. This
means that the probability that allele i is created by a mu-
tation from a different allele is v =u /(K —1). If the ith
allele has frequency x; at one generation, then the expec-
tation value of the frequency at the next generation is
x/=x;(1—u)+(1—x;)v. The number of copies n; of this
allele at the next generation has a binomial distribution

N

n;

n.

pn)=(x)"(1—x;)¥ " (1)

If &x is the change in frequency from one generation to
the next, one can obtain the mean and variance of &x
from (1),

My, =—ux;+v(l—x;), (2a)
V&x =x,»(1—x,-)/N y (Zb)

where small-order terms have been neglected in (2b). If
we assume that u <<1 and N >>1, but the product uN is
of order 1, then the discrete model discussed above can
be approximated by a model in which time and frequency
are continuous variables. This is usually called the
diffusion approximation. Let ¢(x,?;p) be the probability
that the allele has frequency x at time ¢, given that it had
frequency p at time zero. It has been shown ([20], Chap.
8; [21], Chap. 4) that ¢ satisfies the Kolmogorov forward

equation
0 _1 & _9
FYR) axz(l’5x¢) O (Mg, ) . (3)

The discrete model discussed above (known as the
Wright-Fisher model) is just one of a number of possible
discrete models that have very similar diffusion approxi-
mations (see [21]). In the K-allele problem ¢(x,?;p) con-
verges to a stationary distribution ¢(x) at long times,
which is independent of p and is determined only by the
parameter 6 =2Nu (or 4Nu for a diploid population),

(6K /(K —1))

— 8/(K—1)—1 1— 6—1 . (4)
=T ore/ K -1~ (1=x)

The limit K — oo is of particular interest and is known as
the infinite-alleles model. In this case each new mutation
creates an allele that has never before existed in the popu-
lation. There is no true stationary distribution for the
frequency of any given allele x; since each allele is bound
to go to extinction eventually. Thus the limit of (4) when
K — o is not well defined. However, the function '

f(x)=Klim [Kp(x)]=6x "1(1—x)0"! (5)

is well defined and is known as the frequency spectrum.
The mean number of alleles in the population with fre-
quency between x and x +dx is f(x)dx. Since f(x)
diverges like x ~! for small x, there is a large number of
very low frequency alleles. The function f(x) is not nor-
malizable. This is because we have taken the limit
K — o and N— o« with constant 6, so that the number
of alleles is infinite. The function g (x)=xf (x) is normal-
ized so that f (l)g(x)dx =1. This has the interpretation
that if we take a random sample from the population, the
probability that the allele obtained has frequency between
x and x +dx is g (x)dx.

We will now consider the problem of the randomly
broken object introduced by Derrida and Flyvbjerg [17]
and show that this is identical to the finite-alleles model.
Starting with an object of size 1, a fraction £, is broken
off, giving a piece of size x;, which is retained. From the
remainder a fraction £, is broken off to give a piece of
size x, and a further remainder, which is again broken,
and so on. Repeating this process gives an infinite set of
pieces with sizes

x, =&,
x,=(1—§,)§; , (6)
x3=(1—=§)N1—§)85,

etc. The &; are independent random variables in the
range O to 1 chosen according to a given probability
distribution p(£). Following [17] we let g(x)
=3¥,x;8(x —x;), where the overbar indicates an average
over all realizations of the breaking process, i.e., over all
random choices of the &; for a given function p(£). It has
been shown that g (x) satisfies the integral equation

glx)=xp(x)+ [ p(&)g(x /(1—E)NdE . (7)
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Derrida and Flyvbjerg then chose a particular functional
form p(£)=6(1—§)°"!, which makes the solution of (7)
simple. The solution is g (x)=xf (x)=0(1—x)°"!, which
is identical to (5) obtained for the infinite-alleles model.
In this case f(x) is the mean number of pieces formed of
size x. To prove that the models are really equivalent, it
is necessary to look at the joint distribution of sizes of
two or more pieces. For example, it can be shown that
the mean number of pairs of pieces (alleles) in the same
sample with sizes (frequencies) x and x’' s
f(x,x')=92(1—x —x'")/xx’ in both models and that the
higher-order joint distributions are also identical. Itis a
coincidence that the choice of p(£) made in [17] corre-
sponds to the one that arises naturally in the infinite-
alleles model. The procedure of Eq. (6) has also been
used by Patil and Taillie [30] (who refer to it as “preemp-
tion””) and by Donnelly [31]. The list of pieces formed by
this procedure is a ‘“‘size-biased permutation.” The largest
pieces tend to occur at the beginning of the list, although
they are not strictly ranked in decreasing order of size.
The analogy between these frequency distributions and a
broken object has previously been made by MacArthur
[28], who discusses a “broken stick” model for the distri-
bution of frequencies of bird species.

Several of the other problems mentioned above have
similar f(x) distributions. The quenched random map
[16] is the same as Eq. (5) with 6=1. For the mean
field spin glass f(x)=constx” X(1—x)"¥, where
y=1—T/T,. This is the same as the K-allele model [Eq.
(4)] for suitable choice of parameters; however, the prob-
lems are not identical since there are only K alleles in this
case, while there is an infinite number of valleys in the
spin glass. The joint distributions of the type f (x,x’) are
not equivalent for these problems.

We will now consider the homozygosity Y in the
infinite-alleles model. The mean and the variance of Y
can be obtained as

Y= [dxx2f(x)=1/(1+6), (8)
)72_=fdx x4 (x)+ fa’x fdx'(xx’)zf(x,x’)
=6/(1+6)(2+6)3+0), 9)

var(Y)=Y2—(¥)*=260/(1+6)X(2+6)(3+6) . (10)

In the biological literature this variance was obtained by
Stewart [26]. We are normally interested in large popula-
tions N with small mutation rates u, so that 6 may be of
order 1. In this case the fluctuations in Y are of the same
order as the mean and hence Y is non-self-averaging. We
have previously shown that there are many other quanti-
ties related to neutral evolution that are non-self-
averaging (Higgs and Derrida [7,8] and Higgs and Wood-
cock [32]). The important consequence of this is that
there are very large fluctuations between different realiza-
tions of the same evolutionary process.

The homozygosity Y is important in population genet-
ics since quantities related to Y have been used as tests
for the neutral theory of evolution (Watterson [27] and
Tavaré, Ewens, and Joyce [33]). The case of three alleles
only (K =3) has been studied analytically (Stewart [26]),
and the general K case has been studied by simulation.
One way to generate II(Y) is by simulation of the random
sampling and mutation procedure. We have done this for
the infinite-alleles model using a population of N =1000
and four different u values chosen to give =1, 1, 1, and
2. Figure 1 shows the histograms for II(Y) obtained after
10° generations. This requires considerable computer
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FIG. 1. The distribution of the homozygosi-
ty in the infinite alleles model is identical to
J the II(Y) distribution for the randomly broken
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time since many random variables need to be generated
to create each new generation and only one new Y value
is created each generation. Since we have shown that the
infinite-alleles model is identical to the randomly broken
object, we can use a trick given in [17] to generate an ac-
curate II(Y) distribution very rapidly. Suppose we have a
sample of pieces x; and a corresponding value of Y. We
can add another piece x with probability distribution
p(x)=6(1—x)%"! and simultaneously shrink all the other
pieces by a factor (1—x). We now have a new sample
with a new Y value given by Y’'=x2+(1—x)?Y. Iterat-
ing this formula requires only one random variable for
each new Y value created and hence is much quicker than
simulating the infinite-alleles model. [If r is a random
number with a uniform distribution, then x =1—#'/% has
the required distribution p(x).] The smooth curves in
Fig. 1 were generated using 10° iterations of this pro-
cedure. These figures indicate that the same function can
be generated using two entirely different methods.

I1(Y) behaves like (1—Y )%~ ! close to Y =1; thus there
is a divergence as Y —1 if 6 < 1. There are also singulari-
ties in II(Y) at each simple fraction Y =1/K. These are
clearly visible in Fig. 1 for Y =1 and } and become less
pronounced for larger K. They are also less pronounced
for larger values of 6, but are still present nevertheless.
The singularities can be understood in the following way.
In the infinite-alleles model the number of distinct alleles
actually present in the population fluctuates. If there are
K alleles present, then the minimum value of Y is 1/K,
when all alleles have equal frequency. If Y <1/K, then
there must be more than K alleles present. There is thus
an extra constraint added to the frequency distribution
every time Y crosses a fraction 1/K, so that II(Y) has a
different functional form in each interval 1/K to
1/(K +1).

III. GENEALOGIES AND RANDOM MAPS

We now turn to the structure of genealogical trees in
neutral evolution. It has been shown by Derrida and Pel-
iti [6] that the annealed random map [34] is identical to
the Wright-Fisher model of population genetics [18-21].
Each of the N individuals in the population has a parent
chosen randomly from the previous generation. Follow-
ing this procedure back in time creates a family tree
which eventually leads back to a single common ancestor.
The time sale is proportional to N, so it is convenient to
introduce a scaled time 7=(time in generations)/N. If
one considers any given time 7 in the past, individuals
may be grouped into mutually exclusive 7 families such
that all pairs of individuals within a family have their lat-
est common ancestor less than 7N generations ago. Der-
rida and Bessis [34] give the distribution of sizes of the =
families. We will derive their result in a different way, us-
ing the diffusion approximation, which is standard in
population biology.

Consider a particular individual at time O, let x be the
fraction of the population at time ¢ which is descended
from this individual, and let ¢(x,¢;p) be the probability
distribution of x. The initial condition is x =p=1/N for
a haploid population of size N. Equation (3) applies with

M;s, =0 and Vj, as in (2b). An exact solution is possible
in terms of an eigenfunction expansion (Crow and Kimu-
ra [20], Sec. 8.4)

& (2i +1)(1—r?)
»Ep)= BT e—
$x.6p)= 2 i(i+1)

i=1

Til_ 1 (r)Til_l (z)

Xexp[—i(i +1)t/2N1, an

where z =1—2x and r =1—2p. The Gegenbauer polyno-
mials T}(z) satisfy the recursion

(i +2)T} ,(2)=(2i +5)2T}, 1 (2)— (i +3)TNz2) , (12)

with T§(z)=1 and T{(z)=3z. We are interested in the
mean number of 7 families of size x, which is
fAx)=N¢(x,N7;1/N) when N >>1:

fA(x)=Z,(7)8(x —1)

+1 }; (2i + DT} (2)exp[ —i(i +1)7/2]

—Z,(M8(x — 1)+ S Zy(rkdy(x) , (13)
k=2

where Z; (7) is the probability that there are k families
(which depends on 7) and ¢, (x) is the probability that a
family has size x given that there are k families (which
does not depend on 7). The terms in the sum in the first
line of (13) arise directly from (11), while the initial 8§
function term needs to be added to represent the case
when there is only one family. The second line is ob-
tained merely by rearranging the terms in the sum. We
have done this to demonstrate that this is the same as the
result of [34] (their Eq. 34). In the above equation ¢, (x)
and Z, (1) are given by

G (x)=(k—1)(1—x)k"2, (14a)
_ 1 N e of Bt”)|
Z,(7) FTUEET] i§k< 1)i k(2 1)———-(1._]()!
Xexp[—i(i —1)7/2] . (14b)

The latter result has also been derived using coalescent
theory [22] and is equivalent to Egs. (5.5) and (6.3) of Ta-
varé [23]. In this problem 7 plays a similar role to 6 in
the infinite-alleles model, but while the number of 7 fami-
lies is typically fairly small if 7 is of order 1, the number
of alleles in the population in the infinite-alleles model
diverges as N — oo with 0 constant. Thus there is a qual-
itative difference between the f(x) distributions in (13)
and (5).

The Y distribution is also of interest in the 7-family
problem. The result of Ref. [34] may be written as

MY)=Z,(I8(Y — 1)+ 3 Z (DY), (15)
k=2
1 1
Hk(Y)=(k-1)!dex,---fodka(l—x1—~--—~xk)
X8(Y—x2— - —x2).
(16)
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Note that, since the probabilities Z; (7) of there being k
families are dependent on 7, II(Y) is also dependent on 7.
However, the distributions of Y given that there are k
families are simply a set of universal functions I1,(Y) in-
dependent of 7. It is therefore of interest to look at the
shapes of the II, (Y) in more detail. It is simple to show
that I,(Y)=(2Y—1)"!2 for Y >1 Obtaining an
analytical form for higher values of k from Eq. (16) be-
comes rapidly rather difficult. There is, however, a very
simple numerical technique that allows us to obtain the
shape of the II;(Y) for all k. First generate k indepen-
dent random variables §; with an exponential probability
distribution p(§)=exp(—§&) and then obtain their sum S.
A sample of family sizes with the required distribution
can then be obtained by letting x;=§&;/S. This can be
checked by calculating the distribution of the x; obtained
by this procedure, in the following way. Let
z=§£+&+ -+ +&, and S=§&,+z. Since the & are
independent, the distribution of z is p,_,(2)
=e ~%z%¥~2/(k —2)! and the distribution of x, is

&
£tz

Jagw(ep [ dzpy (28

X1

=(k—1D(1—x)F72, (17
which is the required distribution ¢;(x,) given in (14a).
The appropriate joint distributions for two or more x;
generated by this method can also be calculated and
shown to be correct. In Fig. 2 the IT1,(Y) have been ob-
tained by generating samples according to the above pro-
cedure. These distributions have singularities at Y
=1, 1,... as before.

Derrida has stressed [35] that many problems of this
type can be reduced to a sum of independent random
variables which is subsequently normalized, as was done
above. For example, the mean field spin glass can be re-
duced to the random energy model, which in turn is
equivalent to the sum of variables with a Levy distribu-
tion [36]. For the spin glass and for the infinite-alleles
model there is an infinite number of variables, but only
the few largest x, contribute to Y, since they are much
larger than the typical x;. In the 7-family problem this is

8.0

120 —— " w -

10.0

FIG. 2. A set of universal functions I1;(Y) arises in the 7-
family problem on genealogical trees. These are calculated here
for k =2, 3, 4, 5, and 8 using the method of summation of in-
dependent variables described in the text.

not true. For a given k, all the k 7 families are roughly
the same size. The average of Y conditional on k can be
shown to be fHk(Y)YdY=2/(k+l), which goes to
zero for large k.

Since we now have the I, (Y), it is possible to obtain
the full Y distribution for a given 7 using (15). Terms up
to k =12 have been included in the curves of Fig. 3.
These are compared to curves obtained from simulating
the genealogy for small populations. For these simula-
tions we used the matrix of times T; since each pair of
individuals i and j had a common ancestor. At each sub-
sequent generation this matrix is obtained from the
preceding generation using the rules discussed in Refs. [8]
and [32]. The matrix contains sufficient information to
determine the 7-family sizes for any time 7. Since this
procedure is relatively slow, one is forced to use a fairly
small population size and one is therefore limited to a
fairly small number of bins in the probability distribution
for Y, as can be seen in Fig. 3. Agreement with the
theory expected for infinite populations is nevertheless
quite good.
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IV. SAMPLING

We will now return to the infinite-alleles model and
consider the problem of sampling. Suppose we wish to
estimate the homozygosity Y in a population at a given
locus. It is not possible to test all the individuals in the
population. Typically we can test n individuals, where
N >>n >>1. Suppose that, in the n-alleles tested, there
are k distinct allele types and n; alleles of type i
(i=1,2,...,k). Let Y™ be the estimate of Y obtained
from the sample: Y"W'=3*_,(n;/n)%. As long as n is
fairly large, Y'™ will be a good estimate of Y for the
whole population. This is because Y is dominated by the
high-frequency alleles and one can obtain a good estimate
of the frequency of these high-frequency alleles by testing
only a small fraction of the population. Many of the very
low-frequency alleles in the population will not be present
at all in the sample of n, but this does not matter since
they do not contribute much to Y. The joint probability
distribution of the set of n; and k is known as the Ewens
sampling formula [37,21,31]. Ewens has also calculated
the probability that there are k distinct alleles in the sam-
ple. We will denote this probability Z,(6,n) since we
wish to underline the similarity with the Z,(7) in the 7-
family problem. From [37] and [21] (Sec. 3.6) we have

Z,(6,n)=1|Skl6*/S,(6), (18)

where S,(0)=6(0+1)(6+2) -+ (0+n—1) and |S}| is
the coefficient of 6* in S,,(6). Note that the mutation rate
and the overall population size enter into the problem
only through the parameter 6. It turns out that although
the distribution of the n; depends on 0, the distribution of
the n; conditional on there being k alleles in the sample
does not depend on 6. One consequence of this is that we
may write

M(Y™)=Z,(6,n)8(Y"—1)+ 3 Z,(6,n)IL (Y™,
p

=2

(19)

where the similarity to Eq. (15) is obvious. II(Y™) is the
overall distribution of Y™, which is dependent on 6,
while I, (Y") is the distribution conditional on k, which
does not depend on 6. This is important if one wishes to
test the neutral theory. Watterson [29] calls 6 a “nui-
sance parameter’ since its value may not be known very
well. It is possible to test whether data are consistent
with the neutral theory using the functions I, without
knowing 6. Simulated curves for the functions IT,(Y‘™)
are given in Ref. [29].

Derrida and Flyvbjerg [17] finish their article by asking
whether the singularities in the II(Y) distribution might
be observable in any measurable quantity. Models such
as the random map and the randomly broken object are
too abstract to have a direct physical realization and
most of the theory on spin glasses applies to mean field
models that may be rather different from real three-
dimensional spin-glass materials. The situation is
different in biology, where gene frequencies and homozy-
gosities are directly measurable. Comparisons between
measured distributions of Y and the predictions of the

neutral theory have been given by Fuerst, Chakraborty,
and Nei [38] and Singh and Rhomberg [39]. The evi-
dence that these studies provide as regards the validity of
the neutral hypothesis has been reviewed by Kimura [40]
and Gillespie [41]. In Fig. 4 we have plotted data taken
from Fig. 5 of Ref. [39] for the homozygosity distribution
of 61 polymorphic loci in Drosophila melanogaster (this
data set is also reproduced by Gillespie [41]). The histo-
gram has been reversed since it was plotted as heterozy-
gosity (1—Y) in the original paper. The vertical scale
has been converted to probability density. The mean
value of Y in the sample is close to 0.75, which from Eq.
(8) corresponds to 6=1. The theoretical curve is for the
infinite-alleles model with the same value of 6, calculated
by the iteration procedure described above. A quantita-
tive estimation of the goodness-of-fit given in the Appen-
dix indicates that the fit is moderately good. However, it
is not our purpose here to argue for or against the neutral
theory. We merely wish to stress that Y, beloved of
theoretical physicists, is an experimental observable in
biology. At the very least, we can say from Fig. 4 that
the observed distribution is bimodal: there are many loci
with Y close to 1 and many close to 1. Fuerst, Chakra-
borty, and Nei [38] also comment on the peaks observed
in their Y distributions. This may be considered to
amount to an experimental observation of the singulari-
ties in II(Y) and we may expect this demonstration to be-
come more convincing with the increasing availability of
experimental data. Figure 4 also stresses the large varia-
tions in Y which are to be expected between different loci
because the evolutionary process is non-self-averaging.

In summary, we have shown that the infinite-alleles
model is identical to the randomly broken object prob-
lem, that the annealed random map is identical to the
problem of population genealogies, and that there is a
large number of other problems which are mathematical-
ly very similar. We find it fascinating that there should
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FIG. 4. Histogram of homozygosity for 61 loci in Drosophila,
taken from Ref. [39], compared to the theoretical curve for the
infinite alleles model. There is only one free parameter 6, which
has been set to %, so that the mean value of Y for the theoretical
curve is the same as that for the data.
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be such a large number of close parallels between statisti-
cal physics and population genetics and we hope that this
article goes some way towards bridging the gap.

APPENDIX:
QUALITY OF FIT OF THEORY TO DATA

The experimental data in Fig. 4 have been divided into
B =25 frequency boxes. The theoretical probability p; of
obtaining a Y value in the ith frequency box is known
from the II(Y) curve. The probability of obtaining a

sample with m ;,m,,...,mgp loci falling in boxes
1,2,...,Bis
M!
P(m,m,,...,mp)=p, ' py2 - ppd—o->" "
1My B)=P1 P2 Pp mim,l. . .mp!
(A1)

where the total number of loci tested is M =61 in this ex-
ample. The probability of obtaining the particular data
set which was measured can be calculated to be
P =1.1X107'5. We generated random samples of 61

genes according to the theoretical distribution and calcu-
lated P for each one. A total of 100000 samples were
generated and 3% of these were found to have P =P,.
This may be considered as, at best, only a moderately
good fit of the data to the model.

We do not consider these data to be sufficient to make
any strong claims with regard to the validity of the neu-
tral theory. One problem with fitting the data in this way
is that it is assumed that all loci have the same mutation
rate and hence the same value of 8. This may well not be
the case. A way of avoiding this problem is to use the Y
distributions conditional on k, as was proposed by Wat-
terson [29] and discussed in Sec. IV above. There are
several other potential problems with the data: the popu-
lation size may not have remained constant, the experi-
mental technique may not detect all of the different al-
leles that are present, the choice of loci for analysis may
have been biased, etc. (see [41]). In view of all this, Fig. 4
appears to be a surprisingly good fit. As stated previous-
ly, the main reason for showing this curve is to demon-
strate to physicists that II(Y) is a measurable quantity,
rather than to enter into the technicalities of data fitting.
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